Investigation on the Effect of the Gas Exchange Process on the Diesel Engine Thermal Overload with Experimental Results

نویسندگان

  • Sangram Kishore Nanda
  • Andrew Smallbone
  • Anthony Paul Roskilly
  • Wenming Yang
چکیده

In this paper, the influence of the gas exchange process on the diesel engine thermal overload is provided. Main components involved in the gas exchange process are discussed. The ambient conditions, the turbocharger performance, and the valve timing that affect the gas exchange process have been investigated. Experiments were conducted to simulate ambient conditions at different geographical locations and demonstrated a decrease in oxygen concentration in the exhaust as the humidity level in the air increased. Additionally, the effect of an inefficient turbocharger on an engine operating at part-load was also investigated. It was observed that an overly lean air/fuel mixture caused inefficient scavenging and the corresponding level of residual gas trapped in the cylinder increased. This resulted in partial combustion which could be observed as white smoke from the engine exhaust stack, therefore indicating the presence of unburnt fuel. Exhaust valve timing measurements showed that the cylinder with the highest wear rate had its valve closure timing 10 crank angle degrees after the cylinder with least wear rate. The exhaust valves were closed earlier than the designed condition which impaired the scavenging process and increased the level of residual gas trapped in the cylinder. This resulted in a reduction of the actual air-to-fuel ratio and high exhaust gas temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation in the Effect of Number of Nozzle Hole on Performance and Emission in Dual Fuel Engine

Air pollution is one of the major issues about the diesel engines in todays' world. It is a special concern in those areas that have difficulty meeting health-based outdoor air quality standards. Natural gas has low emission and resource abundance and also conventional compression ignition engine can be easily converted to a dual fuel mode to use natural gas as main fuel and diesel as pilot ...

متن کامل

Experimental Studying the Effect of EGR Distribution on the Combustion, Emissions and Perforemance in a Turbocharged DI Diesel Engine

This paper presents the results of experimental work carried out to evaluate the distribution of cold and hot exhaust gas recirculation between cylinders in a DI diesel engine. The experiments have been conducted on a 3.99 liters turbocharged DI diesel engine under full load condition at 1900rpm in order to distinguish and quantify some effects of hot and cooled EGR with various rates on the EG...

متن کامل

Performance Evaluation and Emissions improving of Turbocharged DI Diesel Engine with Exhaust Gas Recirculation (EGR)

Nitrogen oxides (NOx) contribute to a wide range of environmental effects including the formation of acid rain and destroy ozone layer. In-cylinder high temperature flame and high oxygen concentration are the parameters which affect the NOx emissions. The EGR system is a very effective way for reducing NOx emission from a diesel engine (via reduction of these parameters), particularly at the...

متن کامل

Investigation of Dual Fuel Diesel Engine With Particular Reference to Engine Cycle Model

In order to use gaseous fuels in Diesel Engines, Dual-Fuel Diesel Engine (D. F. D. E) the pilot injection approach is chosen. To predict its performance, an engine cycle model, based on limited-pressure Diesel cycle, is constructed. The model predicts D. F. D. E performance with LPG, and CNG gases. Comparing with pure Diesel engine, by increasing gas proportion in dual-fuel, indicated power and...

متن کامل

Computational study on the effects of exhaust gas recirculation on thermal and emission characteristics of HCCI diesel engine

In this paper, a computational in-cylinder analysis of HCCI diesel engine was carried out using IC Engine FORTE (ANSYS 18.2) software package. The analysis used pre-defined industry standard CHEMKIN format for specifying a chemical reaction mechanism during the combustion duration. The investigation was carried out for the effects of various EGR mass percentages on the thermal and emission char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017